
Multiplication Operators on B– 1 / 23

Multiplication Operators on the

Bloch Space of the Unit Disk

Graduate Seminar

Robert F. Allen
George Mason University

rallen2@gmu.edu

September 23, 2008



Acknowledgements

Motivation

The Bloch Space

Previous Results

My Research

Future Developments

References

Multiplication Operators on B– 2 / 23

� This is joint work with my advisor Dr. Flavia Colonna.



Acknowledgements

Motivation

The Bloch Space

Previous Results

My Research

Future Developments

References

Multiplication Operators on B– 2 / 23

� This is joint work with my advisor Dr. Flavia Colonna.

� R. Allen and F. Colonna, Characterization of isometries and
spectra of multiplication operators on the Bloch space,
preprint (http://arxiv.org/abs/0809.3278).



Motivation

Motivation

The Isometry Problem

Isometries on H
p

Isometries on A
p

The Moral of the Story

The Bloch Space

Previous Results

My Research

Future Developments

References

Multiplication Operators on B– 3 / 23



The Isometry Problem

Motivation

The Isometry Problem

Isometries on H
p

Isometries on A
p

The Moral of the Story

The Bloch Space

Previous Results

My Research

Future Developments

References

Multiplication Operators on B– 4 / 23

Definition. (Isometry Problem) Given a Banach space (of analytic
functions) X , what are the isometries on X? That is, what are the
linear operators T : X → X such that

||Tx|| = ||x|| ,

for all x ∈ X?
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Definition. (Isometry Problem) Given a Banach space (of analytic
functions) X , what are the isometries on X? That is, what are the
linear operators T : X → X such that

||Tx|| = ||x|| ,

for all x ∈ X?

The Isometry Problem was first investigated by Banach in 1932,
when he proved that the surjective isometries on C(Q), the space
of continuous real-valued functions on a compact metric space Q,
are of the form

Tf = ψ(f ◦ ϕ),

where |ψ| ≡ 1 and ϕ is a homeomorphism of Q onto itself.
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Definition. For 0 < p <∞, the Hardy Space Hp consists of
analytic functions f on the open unit disk D such that

||f ||p = sup
0<r<1

(

1

2π

∫

2π

0

∣

∣f(reiθ)
∣

∣

p
dθ

)1/p

<∞.
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Definition. For 0 < p <∞, the Hardy Space Hp consists of
analytic functions f on the open unit disk D such that

||f ||p = sup
0<r<1

(

1

2π

∫

2π

0

∣

∣f(reiθ)
∣

∣

p
dθ

)1/p

<∞.

Theorem. (Forelli, 1964) For p 6= 2, T is an isometry on Hp if and
only if

Tf = ψ(f ◦ ϕ),

for some ψ and ϕ.
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Definition. For 0 < p <∞, the Bergman Space Ap consists of
analytic functions f on D such that

||f ||p =

(
∫

D

|f(z)|p dA

)1/p

<∞.
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Definition. For 0 < p <∞, the Bergman Space Ap consists of
analytic functions f on D such that

||f ||p =

(
∫

D

|f(z)|p dA

)1/p

<∞.

Theorem. (Kolaski, 1982) Let 0 < p <∞, p 6= 2. Then
T : Ap → Ap is a surjective linear isometry if and only if T has
the form

Tf = λ(ϕ′)2/p(f ◦ ϕ)

where ϕ is an automorphism of D and λ is a constant of modulus 1.



The Moral of the Story

Motivation

The Isometry Problem

Isometries on H
p

Isometries on A
p

The Moral of the Story

The Bloch Space

Previous Results

My Research

Future Developments

References

Multiplication Operators on B– 7 / 23

Weighted Composition Operators seem to be at the heart of the
Isometry Problem, and thus are an important operator to study.
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Weighted Composition Operators seem to be at the heart of the
Isometry Problem, and thus are an important operator to study.

Issues:

1. Weighted Composition Operators are difficult to study.
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Weighted Composition Operators seem to be at the heart of the
Isometry Problem, and thus are an important operator to study.

Issues:

1. Weighted Composition Operators are difficult to study.

2. In order to get an understanding of the behavior of the
weighted composition operators, it is helpful to study the
Multiplication and Composition Operators independently.
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Multiplication and Composition Operators independently.

3. The composition operators have been greatly studied, where
as the multiplication operators have not.
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Weighted Composition Operators seem to be at the heart of the
Isometry Problem, and thus are an important operator to study.

Issues:

1. Weighted Composition Operators are difficult to study.

2. In order to get an understanding of the behavior of the
weighted composition operators, it is helpful to study the
Multiplication and Composition Operators independently.

3. The composition operators have been greatly studied, where
as the multiplication operators have not.

In order to understand the weighted composition operators better,
we must first understand the multiplication operators.
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Definition. An analytic function f : D → C is said to be Bloch
provided

βf := sup
z∈D

(1 − |z|2) |f ′(z)| <∞.

The Bloch space , defined as B = {f ∈ H(D) : βf <∞}, is a
Banach space under the norm

||f ||
B

= |f(0)| + βf .



Definition of the Bloch Space

Motivation

The Bloch Space

Definition

Schwarz-Pick

The Isometry Problem

Pointwise Multipliers

Previous Results

My Research

Future Developments

References

Multiplication Operators on B– 9 / 23

Definition. An analytic function f : D → C is said to be Bloch
provided

βf := sup
z∈D

(1 − |z|2) |f ′(z)| <∞.

The Bloch space , defined as B = {f ∈ H(D) : βf <∞}, is a
Banach space under the norm

||f ||
B

= |f(0)| + βf .

Theorem. (Schwarz-Pick Lemma) Let f : D → D be analytic.
Then for z ∈ D,

(1 − |z|2) |f ′(z)| ≤ 1 − |f(z)|2 .

If f(z) is a conformal automorphism of D, then equality holds;
otherwise the inequality is strict for all z ∈ D.
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� All polynomials are Bloch.
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� All polynomials are Bloch.

� All bounded analytic functions are Bloch, with

||f ||
B
≤ 2 ||f ||∞ .
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� All polynomials are Bloch.

� All bounded analytic functions are Bloch, with

||f ||
B
≤ 2 ||f ||∞ .

� If f ∈ B and ϕ : D → D analytic, then

βf◦ϕ ≤ βf .

Moreover, if ϕ is a conformal automorphism of D, then
equality holds.
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Definition. Let B∗ denote the set of Bloch functions that fix the
origin, that is

B∗ = {f ∈ B : f(0) = 0}.
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Definition. Let B∗ denote the set of Bloch functions that fix the
origin, that is

B∗ = {f ∈ B : f(0) = 0}.

Theorem. (Cima & Wogen, 1980) Let T : B∗ → B∗ be a surjective
isometry. Then there exists a conformal automorphism ϕ of D and
a λ ∈ ∂D so that

T (f) = λ(f ◦ ϕ) − λf(ϕ(0)),

for all f ∈ B∗.
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Definition. A Bloch function f is called a pointwise multiplier of
the Bloch space if

fB ⊆ B.
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Definition. A Bloch function f is called a pointwise multiplier of
the Bloch space if

fB ⊆ B.

If ψ : D → C is analytic, we define the multiplication operator
with symbol ψ on the Bloch space as

Mψ(f) = ψf,

for f ∈ B.
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Definition. A Bloch function f is called a pointwise multiplier of
the Bloch space if

fB ⊆ B.

If ψ : D → C is analytic, we define the multiplication operator
with symbol ψ on the Bloch space as

Mψ(f) = ψf,

for f ∈ B.

We see a very nice connection between functional analysis and
operator theory in that ψ is a pointwise multiplier of the Bloch space
if and only if Mψ : B → B is a bounded operator.
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The boundedness of the multiplication operator was characterized
independently by Arazy and Brown & Shields.
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The boundedness of the multiplication operator was characterized
independently by Arazy and Brown & Shields.

Theorem. [Arazy, 1982] An analytic function ψ : D → C induces a
bounded multiplication operator Mψ on the Bloch space if and only
if ψ is bounded and

sup
z∈D

(1 − |z|2) |ψ′(z)| log
1 + |z|

1 − |z|
<∞.
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The boundedness of the multiplication operator was characterized
independently by Arazy and Brown & Shields.

Theorem. [Arazy, 1982] An analytic function ψ : D → C induces a
bounded multiplication operator Mψ on the Bloch space if and only
if ψ is bounded and

sup
z∈D

(1 − |z|2) |ψ′(z)| log
1 + |z|

1 − |z|
<∞.

Theorem. [Brown & Shields, 1991] The analytic function
ψ : D → C induces a bounded multiplication operator Mψ on the
Bloch space if and only if ψ is bounded and

|ψ′(z)| = O

(

1

(1 − |z|) log 1

1−|z|

)

.
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Definition. An operator T : X → Y between Banach spaces is
called compact if for every bounded sequence {xn} ⊂ X , the
image {Txn} has compact closure in Y .
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Definition. An operator T : X → Y between Banach spaces is
called compact if for every bounded sequence {xn} ⊂ X , the
image {Txn} has compact closure in Y .

In their 2001 paper, Ohno and Zhao characterized the bounded and
compact weighted composition operators on the Bloch space.
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Definition. An operator T : X → Y between Banach spaces is
called compact if for every bounded sequence {xn} ⊂ X , the
image {Txn} has compact closure in Y .

In their 2001 paper, Ohno and Zhao characterized the bounded and
compact weighted composition operators on the Bloch space.

As a special case, Ohno and Zhao deduced a characterization of
the compact multiplication operators on the Bloch space.
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Definition. An operator T : X → Y between Banach spaces is
called compact if for every bounded sequence {xn} ⊂ X , the
image {Txn} has compact closure in Y .

In their 2001 paper, Ohno and Zhao characterized the bounded and
compact weighted composition operators on the Bloch space.

As a special case, Ohno and Zhao deduced a characterization of
the compact multiplication operators on the Bloch space.

Theorem. [Ohno & Zhao, 2001] The multiplication operator Mψ is
compact on B if and only if ψ ≡ 0.
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Definition. Let ψ be a Bloch function on D. Define

σψ = sup
z∈D

1

2
(1 − |z|2) |ψ′(z)| log

1 + |z|

1 − |z|
.



Operator Norm Estimates

Motivation

The Bloch Space

Previous Results

My Research

Norm Estimates

Isometries

Spectrum

Future Developments

References

Multiplication Operators on B – 17 / 23

Definition. Let ψ be a Bloch function on D. Define

σψ = sup
z∈D

1

2
(1 − |z|2) |ψ′(z)| log

1 + |z|

1 − |z|
.

Theorem. [A. & Colonna, 2008] Suppose ψ is an analytic function
on D inducing a bounded multiplication operator Mψ on B. Then

max {||ψ||
B
, ||ψ||∞} ≤ ||Mψ|| ≤ max {||ψ||

B
, ||ψ||∞ + σψ} .
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Definition. Let ψ be a Bloch function on D. Define

σψ = sup
z∈D

1

2
(1 − |z|2) |ψ′(z)| log

1 + |z|

1 − |z|
.

Theorem. [A. & Colonna, 2008] Suppose ψ is an analytic function
on D inducing a bounded multiplication operator Mψ on B. Then

max {||ψ||
B
, ||ψ||∞} ≤ ||Mψ|| ≤ max {||ψ||

B
, ||ψ||∞ + σψ} .

To achieve these estimates, we actually established estimates on
the weighted composition operator first, and from them deduced the
above estimates.
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If ψ is a constant function of modulus 1, then Mψ is an isometry on
B since

||Mψ(f)||
B

= |ψ(0)| |f(0)| + βψf = |f(0)| + βf = ||f ||
B
.
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If ψ is a constant function of modulus 1, then Mψ is an isometry on
B since

||Mψ(f)||
B

= |ψ(0)| |f(0)| + βψf = |f(0)| + βf = ||f ||
B
.

Theorem. [A. & Colonna, 2008] The multiplication operator Mψ is
an isometry on B if and only if ψ is a constant function of modulus
1.
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Definition. If T is a bounded linear operator on a complex Banach
space E, then the spectrum of T is defined as

σ(T ) = {λ ∈ C : T − λI is not invertible},

where I is the identity operator.
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Definition. If T is a bounded linear operator on a complex Banach
space E, then the spectrum of T is defined as

σ(T ) = {λ ∈ C : T − λI is not invertible},

where I is the identity operator.

Theorem. [A. & Colonna, 2008] Let ψ be the symbol of a bounded
multiplication operator Mψ on B. Then

σ(Mψ) = ψ(D).
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Definition. If T is a bounded linear operator on a complex Banach
space E, then the spectrum of T is defined as

σ(T ) = {λ ∈ C : T − λI is not invertible},

where I is the identity operator.

Theorem. [A. & Colonna, 2008] Let ψ be the symbol of a bounded
multiplication operator Mψ on B. Then

σ(Mψ) = ψ(D).

Corollary. [A. & Colonna, 2008] Let ψ be the symbol of an
isometric multiplication operator Mψ on B. Then

σ(Mψ) = {ψ(0)}.
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� Establish estimates for the essential norm.
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� Establish estimates for the essential norm.

� Characterize the essential spectrum.

Weighted Composition Operators

� Characterize the isometries.
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� Establish estimates for the essential norm.
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Multiplication Operators

� Establish estimates for the essential norm.

� Characterize the essential spectrum.

Weighted Composition Operators

� Characterize the isometries.

� Characterize the spectrum.

� Establish estimates for the essential norm.

� Characterize the essential spectrum.
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